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The propagation of small amplitude waves through a nonconducting, isotropically
magnetizable medium is studied, and simple wave equations obtained, Simple
waves in an ideal magnetizable gas are studied in detail, The problem of stabi=
lity is considered for the ideal gas and a magnetizable fluid, and the parameter
values for which the wave phase velocities become imaginary are determined,

The motion of a medium which does not conduct current but can be isotropically and
nonuniformly magnetized in an external magnetic field, can be described by the fol-
lowing system of equations [1]
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Here Ti; is the viscous stress tensor; A°, 1), and ), are constant coefficients of heat
conductivity, first and second viscosity, respectively; M (p, T, H) = (4n)™ (u —
1) H is a function of magnetization (assumed known), u = p (p, ', H) is the mag-
netic permeability of the medium, the dielectric permeability € is constant and free
charges are absent,

The propagation of small amplitude waves in such a medium can be described by the
following system of seven equations:
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Here u; denote perturbations of the variables and the matrices |Z;z| and | d;x | have
the following nonzero components:
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The four scalar variables v'y, v,’, B, and E,’ of the system (1) satisfy the equations
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from which it follows that B,” = const, £," = const, the perturbations p_’ and v,’
(which do not appear in (2)) in a nondissipative system (d;, = 0) do not vary in the
plane wave and in the general case their initial values diffuse into the medium indepen=
dently of the wave propagation, The field perturbation H’ is eliminated from (2) using
the linear relation (s

(4rpm) B = Lp’ -+ s’ -+ 1,B, + 1,B,’ )
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Equations (2), (4) and (5) are obtained from (1) by linearization with respect to the une
perturbed state of the medium, under small perturbations u; depending only on x and Z.
The unperturbed state of the medium is determined by the constant values of the para-
meters v = 0, p, p, s, T, B, E and the derivatives
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In the following we shall limit ourselves to considering a nondissipative, nonconduct=
ing medium, i.e, we shall assume d;, = 0. (Note that in [2] the medium for which
the propagation of the sound waves was dealt with in example, was erroneously called
nonconducting), Seeking a solution of (2) in the form Un = u,° exp (ikz — iwl),
we obtain for the phase velocities of the waves A = ® / k, a characteristic equation of
the form
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AIAS — A8 (A, 4 c24,) + AP (Ag + c24,) + 24, = 0 (6)

in which the coefficients A; are independent of ¢, The expressions for these coeffici~
ents written in terms of the matrix elements z;, are sufficiently awkward and are not
given here, Determining the roots of this equation in the form of the following expan-

sion:

A% == ™™ A, XY L ay ag e
we can show that only two values of m are possible, m = (0 and m = 1. Discarding
terms of the order ¢™2, we obtain the roots of the characteristic equation (6) in the
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Seven roots of (8) given in (7) determine three distinct types of waves:

1) entropic wave with phase velocity },,

2) first electromagnetic wave with phase velocity A, ; and second electromagnetic
wave with phase velocity A, ;,

3) magnetohydrodynamic wave with phase velocity A, ;.

The second electromagnetic and the magnetohydrodynamic wave are anisotropic, i, e,
the velocity of propagation of their wavefronts depends on their orientation with respect
to the field B.

As we know [3], the simple waves are closely related to the small amplitude waves,
In the case under consideration, the differential equations for the simple waves can be
written in the form
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Here r,™, r,™, ..., ") are the components of the right eigenvector of the matrix
;] corresponding to the given phase velocity A, The expressions for these compon=~
ents which are proportional to the amplitudes of the corresponding waves, in the present
case have the form

y = A8 — A% (Zypagy - PRyy) A AP (Ryy + PRyg) — 'Ry 9

ry = M (2y9%9; + 2Ryy) + A3 (Ryy -+ ¢*Ryg) + 'R,y

ry = Mg — A3c?Ry + AetRy,

ry = —Mczy — Me® (Ryy + *Ryy) — ¢ Ryy

ry = Mcxg — M (Ryy + *Ry) — 'Ry

re = Mxg — Ac (Rgy + c2Rgy) + AcPRgy

r; = — My + AMe (Ryy + ¢2Re) + Ac®Ryg

The quantities R;, which shall be needed below, have the following values:
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Proceeding from (9) we can obtain, for each value of the phase velocity A, the corre-
sponding differential equations of the simple waves, discarding in r;(* the terms of the
order of ¢™® and higher,

Equations for a simple entropic wave (A = () have the form

dp ds dr, B B, - dB, _ dE, N dE, 11
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=

From this it follows that in a simple entropic wave the velocity and the electric field
do not vary, In contrast to the entropic wave in a nommagnetic medium, here the field
B. varies, but the wave is plane polarized since from (11) it follows that 5.8, =

const. Choosing a coordinate system in which B, = 0, from (11) we obtain
ds R 4B,  Ra _ 12
dp” Hi? dp ~ Ru’ Usr By, B, = const a2

Equations determining the second electromagnetic simple wave in a magnetizable
medium (A = X, ;) assume, after computing the corresponding coefficients, the follow-

ing form: ,, 4 do, 4B, B, dE, _ dF a9
KV my NB 2 0 =B, —B, —AeT1B, Y

Thus in the second simple electromagnetic wave the density and the velocity of the
medium do not vary, This wave is also plane polarized, Then, setting B, = 0, from
{13) we obtain gy E, As ds
T{_LT;' e PR 'ﬁf‘y" I e mp‘“"TA’?VByv 01 Uyy b‘!l = const (14)

In the first electromagnetic wave (A = A, ;) only the electric and magnetic fields
vary, and the wave is also plane polarized,

Finally we consider simple magnetohydrodynamic waves in a magnetizable medium,
By virtue of (7),(9) and (10) we obtain from (8) for A = Ag5

dp ds B dvx . dSﬁ .
plias | MBw = e Atm | —(AHla - Ra) 15)
dB, dEy dE,

— BB} (At - Ru) 0 v
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Thus in a simple magnetohydrodynamic wave only the electric field does not vary and,
similarly to all previous waves, this wave is also plane polarized, Setting B, = ( from
(15) we now obtain
dv A
x 87 ds 2 »
T Py E,, E, = const,

f{By ) B?]‘Z -1
0 Byt (1 Lo ) (T 0 (e -+ 1eT)
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Ry = 4mpmpe™® [mp? (po + urle) (2a500e + AurN)By2 —
Ty3Zs (WP + paB? B

All these types of simple waves exist, provided that the phase velocities are real, It
follows from (7) that in a magnetizable medium the quantities A, ; and Ag ; may be~
come purely imaginary at certain values of the parameters, The system (2) then ceases
to be hyperbolic and the medium becomes unstable, An instability of a similar type
has already heen observed in the magnetic gas dynamics when investigating waves in a
plasma with anisotropic pressure [4] and in the analysis of sound waves in a magnetiza-
ble conducting medium [2],

We shall assume that a magnetizable nonconducting medium becomes unstable and
its motion can no longer be described by the system (1),if ' -= arc sin B,B™7 is
found such, that either A, . or Ag,; becomes imaginary. This may occur in one of the
following three cases:

1) Ly +1 <0, 2) pryy + 25 23 <L 0, 3) p2g1 + Ty > 0 an
Ly +1<0 (14 Ly) (prsy + Zas¥se) — Ly =2 0

In the first case the second electromagnetic wave is unstable, and in the remaining cases
it is the magnetohydrodynamic wave,We note that none of the above cases can occur
in a nonmagnetic medium,

Let us now consider some models of the magnetizable media, The state of an ideal
gas in weak magnetic fields can be described by the following equations (R is the gas
constant and % = ¢, / ¢, is the ratio of specific heats):

(16)
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B =nqu(p, IH)H, T (p — 1)/ up = const
e palie @R )
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Analysing these expressions we find that an ideal magnetizable gas with | > %! and
2 > u >> %/; is stable only within the following range of values of the dimensionless

arameter o -
P —wr ol a*

— ®—1\ 1 u—1 v-—1)
o= (Bt h =g -V e =)

Thus a diamagnetic {(p < 1) and paramagnetic (p > 1) substance should be unstable
in the above sense in the fields

4y p Zmpmz P
B> ]/-('K—-l J1—n (P-<1), B>]/‘(y “NDHp—1 (H>1) (20)

Under the usual conditions (p ~ 108 dyn/cm 2) the stability can be expected to be
disturbed at sufficiently large values of |y — 1], as the magnitude of the field B is
restricted by the assumption of linearity between B and H. If, on the other hand, we
assume that the Clausius~Mosotti law of magnetization holds also in the strong fields,
then with the values of [u — 1| ~ 107¢, instability may occur in accordance with
(20) in the fields of the order of 100 teslas,

Let us comsider the simple wave equations for the ideal gas, described by (18),

From (10), (11) and (18) we obtain the following expressions for the entropic wave:

ds %R a(}k—i)@—%)Bu"‘)( N %a(}l—i)By2>‘1
T (n~1)p(1 T w—DB - ——rF 1)
dB, 2B, (p—1) (1 m(pu-—i)Byz)—l
dp v (% — 1) B2
Taking into account the fact that (18) implies
i__ ix"‘l _S')—S }L*i_pn——i/p\z—-x 8g —— 8§
To ( P») BXP( ¢, )’ TR Y e‘P( - ) (22)
= g, [ BP0 (50— 3) _ =N 1)B?
*= % ( Bﬂ) < P ) EXP( . ) (a" = 4Tpgea? )

consequently, in order to obtain simple wave equations in the finite form we must inte-
grate a nonlinear system (21), which is rather complicated, Although certain general
conclusions concerning integral curves can be drawn from (21), we shall only consider
the small values of [u, — 1|. Discarding in (21) terms of the order of (u, — 1)*
and higher, we obtain after integration

s — sy = %e,n (py /)y By — By, = By, (me — Dl / Po)? —1]

The first equation expresses the fact that the pressure in the entropic wave does not vary
(with the accuracy of up to (e — 1)?), while the second equation determines the vari-
ation in the magnetic induction as function of density,

For the second electromagnetic wave from (7) and (19) we have

(23)

s B, —1) dE, wi(p—1) B2\
dB, lmppi (1 -Fna)? aB "i ]/p,g <1+ (1 + na) B? )

Let A be the velocity of wave propagatlon relative to the coordinate system, chosen
so that A = v, + A. Since p and v, in the electromagnetic simple waves do not
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vary, we use (7),(13) and (18) to obtain
dAss 3cB wa(p —1) ( % (5 -+ 3ua) B2 )

dB, 2V Ry PB2 (1 %) 3(1 + na)t B2

This shows that for ®cc >> —1 the velocity of propagation of these waves increases
with B, , with consequent "overlapping” and jumps in the values of B, s and E,.

Equations (23) can be integrated, In fact, substituting (22) into the first equation of
{23) and integrating, we obtain

B? = B* -+ B, = By? (1 — 2o ) exp (—— 2 (50— ) S)>

HAC e,

The second equation of (23) now yields

B
v xa(p—1) B 2\\* dB
_ y u_
E,— Eo= i (1 T ) Vie
Byﬂ
The simple electromagnetic waves were studied for the case & = & (£), p = p (H)
in [5]. Equations of this type can be obtained from (13) by setting pur = 0

Simple magnetohydrodynamic wave equations in an ideal gas have, in accordance
with (15) and (19), the form

dv, v [+ B2B s dB, B, (u—1) (ot 2—x)
dp - 60 (62 FBIBT) ' Tdp T o[l + o+ (W —1) %aB B 24
ds  axR B—1DE—n)(a+ Ay 42 B2 — B2 —1)

dp - p BEm— D (I wa) 4 a(w— 1) B, [ox (¢ —2) 5 3n — 4]

From this it follows that in a paramagnetic medium we always have dBy /dp >0,
so that the increase in the density of the medium is accompanied by an increase in the
field strength, Discarding terms of the order of (u, — 1)* and higher we obtain on
integrating (24)

Uy — Upg = K?;afl \"(_;):\)(x-lm g g Q1) oy (x 1) (( 4 )Ju—x;.z _ 1)}
By — Byy= By — 1) H - )2 qu

ity py |20
s—o =g (iE) -

Moreover, since
dAS,? _ Ga t% - 1) /__P_‘\*(KQB)?' 31 e 55} ("f‘.’, — 1) {5 o 3%) jeh Y 2(x-1)
do 200 Ao/ . 2 41) p

then in a paramagnetic medium (o, > 0) the difference in the velocity of propaga~-
tion of the points with different densities is smaller than in a nonmagnetic gas, and this
causes a delay in transforming the simple waves into shocks, On the contrary ,in a
diamagnetic medium the formation of shocks proceeds rapidly,

Considering an ideal gas in strong magnetic fields, when it is magnetically saturated,
we can assume that

M=pK®—T) (06 >T, K = const) (25)

In this case we have
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_ a? (v —unp I
Li=wd—pa—p L~15 !
(v=0T"1>1, B=4npK?Tc,)

Analysis of the expressions for Ay ; and Ag,-in the case of a saturated ideal gas shows,

that instability occurs when [} ©> 1. We note that the dimensionless parameter f§ is
independent of the magnetic field and the condition f§ > 1 can be written in the form

M > a (v — D)p" (dnn (6 — 1))~

The simple wave equations in a saturated gas are basically the same as those discussed
before, and can be written using (25), (3) and (8)— (10).

Finally, we consider a magnetizable medium with properties resembling those of fer~
romagnetic fluids [6], We assume that the state of the medium in the absence of an
electromagnetic field is determined by

r=Te(mT)=1T6p (26)
with the following known parameters obtained experimentally: isentropic speed of sound
a, (= Vpp), the coefficient of thermal expansion y; = — pr / p, the coefficient of

isothermal compression y, = p,, / p and the specific heat at constant pressure ¢, =
T/TS° Then T, and T, in(3) mustbereplaced by the expressions based on (26),
namely TP = TPO / PYas Ts =T (1 - Tpp'f‘)cp_l =T (1 + Tpo'\’l’}’z‘l)cp—l
(T =Ts+ ToprTy)

We accept T,° = T / p asthe value for T, = (91" / dp),, this is justified by
experiments for most fluids [7], In addition, we shall assume for simplicity that p,=0,
i, e, disregard the magnetostriction effect, as is sometimes done for the liquid magnetic
substances, We note that the sound waves in ferromagnetic fluids were also discussed in
[8, 91.

When M = K, (0 -—— T') , we have the following expressions for a saturated liquid
magnetic subsatnce

KT
Nt — q _ AnKeT (1 + TIT> . mt = 4mop®

pey, Tep

KoHT N f&ﬂK«)zT
Ty = a2 {1 — Loy = — — K H
p 31 & ( PPTWS )y 23 o ( T KO )
ro = — KL (4 1T
Py A Tep

Let us assign the quantities appearing in these formulas, the followingorders of magnitude
which are characteristic for liquids under normal conditions:
Y= 1073 /deg, 9y, = 107¢/atm, K, = 3x107? gauss / deg
T = 3 x102 deg, ¢, = 1010 erg/g xdeg, a, = 10% ecm/s
p=1g/cm?, p =10° dyn/cm? = { atm

Then, according to estimates, the term pxy; makes the greatest contribution to (7).
Consequently, distegarding terms of the order higher than 1078, we obtain

{ KoHT \2
__ —t2 == T Towatn 2
hys = d-ce7 7, he,s = Gy (1 pYepa? )
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which shows that in the example in question instability can occur in the fields H >
DPYopasY KT ~ 105 gauss,

The author expresses his gratitude to L, I, Sedov for the attention shown to this work

and for valuable comments made during its assessment,
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PLANE ELECTROHYDRODYNAMIC FLOW WITH REVERSE CURRENT
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We consider the modes of flow of unipolarly charged jets in the case when the
charged particles return along the peripheral zones of the hydrodynamic streams
to the electrode-"emitter" under the action of both the induced and the exter-
nal electic field, It is shown that the reverse curren. increases with increasing
width of the section through which the charged particles enter, the electric
charge density at this section and the intensity of the external retarding field,
The electric current from the electrode emitter is reduced by the reverse cur-
rent and the retarding effect of the external field,

During the present investigation we solve the two-dimensional electrohydro=-
dynamic equations numerically, determine the local electrical parameters and
the character of the flow established over the whole region,

The reserve currents result from the spatial (two-dimensional) character of
the real electrohydrodynamic flows, The effect becomes of interest when con-
structing electrohydrodynamic energy transducers where the losses caused by



