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The propagation of small amplitude waves trough a non~nducting, isotropically 
magnetizable medium is studied, and simple wave equations obtained. Simple 
waves in an ideal magnetizable gas are studied in detail. The problem of stabi- 

lity is considered for the ideal gas and a magnetizable fluid, and the parameter 
values for which the wave phase velocities become imaginary are determined. 

The motion of a medium which does not conduct current but can be isotropically and 

nonuniformly magnetized in an external magnetic field I can be described by the fol- 

lowing system of equations [I] 

$- + divpv = 0, pT & (s + s*) = rik 2 i_ h”AT 
k 

Pg -t- V (P i- 9) - MVlCI = qtAv + (Q + -$- Q) V div v 

div B = 0, divE = 0 

aB 
c rot E, 

alx 
at=- Eat = c rot H 

E = H -+ hM(p, T, H)H/flr, P = P(P, s), T = T (P, s> 

Here Q is the viscous stress tensor ; A”, qr and ~a are constant coefficients of heat 

~nductivi~, first and second viscosity, respectively ; M (p, T, H) Z+E (~zE)-~ (p - 
1) H is a function of magnetization (assumed known), p = p (p, T, H) is the mag- 
netic permeability of the medium, the dielectric permeability E is constant and free 
charges are absent. 

The propagation of small amplitude waves in such a medium can be described by the 
following system of seven equations : 

(i, k = 1, 2,. . .7) 

u1 = pfi us =s’, us s v,‘, uq EYE But, ug 3 I&‘, us z.z iTu, u7 E E,’ 

Here u1 denote perturbations of the variables and the matrices I/ xi k (/ and 11 di k 11 have 
the following nonzero components : 
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Xl3 = P, X23 = PN [mpTB2(pp+ ~T,)--s~* --s*TT~I 

X.26 = - cmppTNBz, x21 = - %3By I B, 

%t= (PP-!-%+ 9~TAlp + i~~~~B2(~~+ z~TT~) 

x32 = (A + $TTA/ P$- mP~~~2~TT~ 

234 = - mw&L X85 =x&,1& 247 = - 556 = -c 

~1 = ---J&w-~~c(IL~+ pTT,)& 

x6z = - 4nppe-1mc,UTT,B,, X64 = - 4npmcp&LB*1B,B, 

xs5 = 4npmce-l [pz + p~B_l (B,” f Bu2)] 

5 71 = - X&p I% X72 = - x,,BJB, 

x74 = - 4npmc6’ [pz + ~HB-I (Bga + B,‘)1, x7, = -x%4 

d,, = Nh’T, IpT, d,, = Nk”T, i pT, d33 = h A- 4~31111~ P 

(m-l = 4npp (pz + pHB), N-l = 1 -I- T, (ST* - rnpT2 B2)) 
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(3) 

The four scalar variables u’,,, v,‘, B,’ and E,’ of the system (I) satisfy the equations 

(4) 

az$ _ a=v ’ av r a2v I 
Pat -%-&I p+=rlqj$ 

from which it follows that B,’ = const, .b’,’ = const, the perturbations vz’ and vz’ 

(which do not appear in (2)) in a nondissipative system (dik = 0) do not vary in the 
plane wave and in the general case their initial values diffuse into the medium indepen- 
dently of the wave propagation, The field perturbation H’ is eliminated from (2) using 
the linear relation 

(45tpm)-l H’ = lip’ + 1,s’ -/- l,B, + l,B,’ (5) 

11 = - B(Pp + PTTAI*, 1, = - BT,p 

1, = (- /.L~B,B,B-~, p’-t- PHB-I(B,~ t-B>), --PHB@$-~) 

1, -;f (- pHB,B,B+, - F~B~B~B-~, p2 i- PHB-'(&~ + Bv2)) 

Equations (21, (4) and (5) are obtained from (1) by linearization with respect to the un- 
perturbed state of the medium, under small perturbations ui depending only on x and t. 
The ~i~~~bed state of the medium is determined by the constant values of the para- 

meters v = 0, p, p, s, T, B, E and the derivatives 

In the following we shall limit ourselves to considering a nondissipative, nonconduct- 
ing medium, i. e. we shall assume di k = 0. (Note that in @] the medium for which 
the propagation of the sound waves was dealt with in example, was erroneously called 
nonconducting). Seeking a solution of (2) in the form U, = urn0 exp (ikx - ior), 

we obtain for the phase velocities of the waves h E o / k, a characteristic equation of 
the form 



a ias - a4 (A, + SA,) + a%? (A, -t- ?A,) + @A51 = 0 (6) 

in which the coefficients Ai are independent of c. The expressions for these coeffici- 
ents written in terms of the matrix elements xik are sufficiently awkward and are not 
given here, Determining the roots of this equation in the form of the following expan- 

sion : 
h2 = a,Sm + am_lc2(m-1) + . . . -f- a, + a_,c-” + . . . 

we can show that only two values of m are possible, m = 0 and m = 1. Discarding 

terms of the order c-s, we obtain the roots of the characteristic equation (6) in the 

Seven roots of (6) given in (7) determine three distinct types of waves: 
1) entropic wave with phase velocity A,, 
2) first electromagnetic wave with phase velocity h,,, and second elec~omagnetic 

wave with phase velocity h4,&, 
3) magnetohydrodynamic wave with phase velocity h,,r. 

The second electromagnetic and the magnetohydrodynamic wave are anisotropic, i, e. 
the velocity of propagation of their wavefronts depends on their orientation with respect 

to the field B. 
As we know [3], the simple waves are closely related to the small amplitude waves. 

In the case under consideration, the differential equations for the simple waves can be 

written in the form 
CiUl t/U2 C/W 

t.( = F!,‘.) - *** -- : f $. ) (8) 
1 I 

Here F~(),), l”,i’~), _ . . , r7(‘) 
a 

are the components of the right eigenvector of the matrix 

/I xi k jj corresponding to the given phase velocity h. The expressions for these compon- 
ents which are proportional to the amplitudes of the corresponding waves, in the present 

case have the form 

r1 = ha - h4 (z2a5a2 + c2Rll) + fh”c= (RI2 + c”R,,) - c4R1, 

r, = A4 (~~3x3~ + c2R,,) + h2c2 (Rzs + c’&) + c4&4 

r3 
c k533, - 3b3~2R;1 + Xc4R3, 

r* = -h4cs7, -- h2c2 (R,, + c2Rh2) - c4 Ha3 

r 5 = hkx,, - 2~~2 (Rsl j- c2Rh2) - c4Rs3 

rg = h%,, - h3C (Rl%, + cZR6J -+ hc3R,, 

r? = - hQi, + k3c (R,, _t e2R& t_ hc3Rm 

(9) 

The quantities Ri k which shall be needed below, have the following values: 
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Proceeding from (9) we can obtain, for each value of the phase velocity h , the COKWZ- 

sponding differential equations of the simple waves, discarding in ~~tf,) the terms of the 

order of cm2 and higher. 
Equations for a simple entropic wave (h = 0) have the form 

From this it follows that in a simple entropic wave the velocity and the electric field 
do not vary. In contrast to the entropic wave in a nonmagnetic medium, here the field 

B, varies, but the wave is plane polarized since from (1%) it follows that n,B y-1 z-;. 
co~st..~hoosing a coordinate system in which B, I-- 0, from (11) we obtain 

Equations determining the second eiectromag~~t~c simple wave in a magu~rizable 
medium (A = A, 3 assume, after computing the corresponding coefficients, the follow- 

Thus in the second simple ~Iec~omagueti~ wave the density and the velocity of the 
medium do not vary, This wave is also plane polarized. Then,setting B, = 0, from 

In the first electromagnetic wave (A = A,,,) only the electric and magnetic fields 
vary, and the wave is also plane polarized, 

Finally we consider simple magnetohydr~y~mic waves in a magnetizable medium, 
By virtue of (7), (9) and (10) we obtain from (8) for h =: kg,, 

dp ds ilzl _ % - .-- = -2 =II 
p&3 hZ f&3 + && arr,, --(h%&*~ + ff13) = 

dE, _ dE, 
WI 

dBZ 
~---.--__I 

- Bp;” @W&7 + &s) 0 0 
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Thus in a simple magnetohydrodynamic wave only the electric field does not vary and, 
similarly to all previous waves, this wave is also plane polarized, Setting B, = 0 from 

(15) we now obtain 

RI = pxai~~~~-~ (1 + L,ByZBd2) - 4npyeezm2 (pp + pTTP) x 

(P& + PT ~x32V~~ 

R2 = 4npmp~lee2 imp2 (pp + ~TT,J (~~~:)p,, -I- h”p~N)Bi’ - 

x23x31 (p2 + jmB2,W1 

All these types of simple waves exist, provided that the phase velocities are real. It 
folIows from (7) that in a magnetizable medium the quantities ha15 and h,,, may be- 

come purely imaginary at certain values of the parameters. The system (2) then ceases 
to be hyperbolic and the medium becomes unstable. An instability of a similar type 
has already been observed in the magnetic gas dynamics when investigating waves in a 

plasma with anisotropic pressure [4] and in the analysis of sound waves in a magnetiza- 

ble conducting medium p]. 

We shall assume that a magnetizable nonconducting medium becomes unstable and 
its motion can no longer be described by the system (l), if .$) --.; arc sin B ,B-l is 
found such, that either &s or hS,? becomes imaginary. This may occur in one of the 
following three cases : 

1) Id, + 1 < 0, 2) px31 -t *r23 x32 < O7 3) p”~l + 223532 > 0. (17) 

L, -,-’ i $ 0 (1 + La) @“Cal + &a532) - & 2 o 

In the first case the second electromagnetic wave is unstable, and in the remaining cases 
it is the magnetohydrodynamic wave.We note that none of the above cases can occur 

in a nonmagnetic medium. 
Let us now consider some models of the magnetizable media. The state of an ideal 

gas in weak magnetic fields can be described by the following equations (R is the gas 
constant and jc = cl, / c, is the ratio of specific heats): 

In this case 

P = PKCXP (S / c(,), T = H-lpx-req (8 1 crf 

B = p (p, T)H, T (p - 1) i pp = con& 

(18) 

and setting BI = 0, we obtain from (7) 

6 (1c - 1) (1 $- r) 
0 

~ 3sn-44Xxr 
X(X-i) ' 

a1 == (s = i-t x2 
r(p-.-1)(3?c-4--_Xr) ’ 2 xr(p- 1) 
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Analysing these expressions we find that an ideal magnetizable gas with 11, > X-l and 
2 > x > 4J, is stable only within the following range of values of the dimensionless 

parameter a: 
- x-IL < a < a* 

Thus a diamagnetic (p < 1) and paramagnetic (p > 1) substance should be unstable 
in the above sense in the fields 

-- 
B>)/ 4n~p 

(x - 1) (I -PI (P < 11, B > J 43v~~*P 
(1?--l)(p-I) (pJ> 4) (20) 

under the usual conditions (p - $06 dyn/cm e) the stability can be expected to be 

disturbed at sufficiently large values of /p - $1, as the magnitude of the field B is 
restricted by the assumption of linearity between B and 1-I. If, on the other hand, we 
assume that the Clausius-Mosotti law of magnetization holds aiso in the strong fields, 

then with the values of 1p - II - 10-6 , instability may occur in accordance with 

(20) in the fields of the order of 100 teslas, 
Let us consider the simple wave equations for the ideal gas, described by (18). 
From (lo), (11) and (18) we obtain the following expressions for the entropic wave : 

ds -=- 
dp 

1 _ a(F---1)P-4By2 xa (p - 1) Bu2 -1 

(X - 1) B* i-k (X-l)IP (21) 

dB, _ ~B,(P - 1) xa (p - I) Bl,2 -1 
-_ 
& P f I+ (x - 1) B2 

Taking into account the fact that (18) implies 

consequently, in order to obtain simple wave equations in the finite form we must inte- 
grate a nonlinear system (21), which is rather complicated. Although certain general 
conclusions concerning integral curves can be drawn from (2X), we shall only consider 

the small values of Ipa - 1 I. Discarding in (21) terms of the order of (pa - l)a 
and higher, we obtain after integration 

s - so = XC&I (pO I p), B, - B,, = By0 (pLo - 1) i(p I pi,)s -11 

The first equation expresses the fact that the pressure in the entropic wave does not vary 

(with the accuracy of up to (pO - 1)2), while the second equation determines the vari- 
ation in the magnetic induction as function of density. 

For the second electromagnetic wave from (7) and (19) we have 

ds 
dB,= 

B1/ fv - 1) 
4npl”.l’ (1 + 3da) ’ 

(23) 

J-et A be the velocity of wave propagation relative to the coordinate system, chosen 
so that A = u, + h. Since p and V, in the electromagnetic simple waves do not 
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vary, we use (7),(13) and (18) to obtain 
dA&i 3cB,xa (p -- 1 t 

i 

XLY (5 -+ 3xr) B1{2 

- = 2 I/&&pB’(i “_xX) 1 - :+(I +xa)zW dfi,, i 

This shows that for xcx > -1 the velocity of propagation of these waves increases 
with B 21, with consequenr “overlapping” and jumps in the values of B,, s and E,. 

Equations (23) can be integrated, In fact, substituting (22) into the first equation of 

(23) and inte~ating~ we obtain 

B” = &,,2 “r-- J&’ -_ &2 
( 

1 _ 

The second equation of (23) now yields 

The simple electromagnetic waves were studied for the case a = E (E), l,~ = lo (H) 

in [5]. Equations of this type can be obtained from (13) by setting pLT = 0, 
Simple magnetohydrodynamic wave equations in an ideal gas have, in accordance 

with (15) and (19), the form 

B, (p - 1) (0% -! 2 -x) 

p[l '_i- ax + (p-1) xd3V2B-21 
(24) 

From this it follows that in a paramagnetic medium we always have dB, I’ dp > 0, 
so that the increase in the density of the medium is accompanied by an increase in the 

field strength. Discarding terms of the order of (pO - 1)e and higher we obtain on 
integrating (24) 

2ao _ p ‘,(x-1).2 Q, (X - 1) 
r-J, - UX!, =x ii i 

- PQI 
---l-t 6 

S-S()= 

then in a paramagnetic medium (a, > 0) the difference in the velocity of propaga- 

tion of the points with different densities is smaller than in a nonmagnetic gas, and this 
causes a delay in transforming the simple waves into shocks. On the contrary ,in a 

diamagnetic medium the formation of shocks proceeds rapidly. 
Considering an ideal gas in strong magnetic fields, when it is magnetically saturated, 

we can assume that 
M = pK (0 - T) (0 > Z’, K = const) (25) 

In this case we have 
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us (z - xp 
L1 = I@ x (x - 1) (1 -- pp ’ L,++-1 

(z f eT-l> 1, p 55 4npK2Tc,l) 

Analysis of the expressions for 3\. 4,6 and he, 7 in the case of a saturated ideal gas shows, 

that instability occurs when fi > 1. We note that the dimensionless parameter p is 

independent of the magnetic field and the condition p > 1 can be written in the form 

M > a (z - l)p’/z (43cx (x - I))-“2 

The simple wave equations in a saturated gas are basically the same as those discussed 

before, and can be written using (25), (3) and (8) - (10). 
Finally, we consider a magnetizable medium with properties resembling those of fer- 

romagnetic fluids [6]. We assume that the state of the medium in the absence of an 

electromagnetic field is determined by 

T = T (8, P (P, T)) = T” (a, P> (26) 

with the following known parameters obtained experimentally : isentropic speed of sound 
a, (E l/pp), the coefficient of thermal expansion y1 = - pr / p, the coefficient of 
isothermal compression yz = pP / p and the specific heat at constant pressure cP z 

T / T,“. Then T, and T, in (3) must bereplaced by the expressions based on (26), 

name’y T, = T,” / py2, T, = T (1 - TI;p~)cp-l = T (1 + T~‘~~~~l)c~-l 

(T,” = T, + T,wT,“) 

We accept T,” = T f p as the value for T,” = (dT” / $I),, this is justified by 

experiments for most fluids [7]. In addition, we shall assume for simplicity that I+== 0, 
i. e. disregard the magnetostriction effect, as is sometimes done for the liquid magnetic 
substances. We note that the sound waves in ferromagnetic fluids were also discussed in 

[8, 91. 
When M = K, (0 - T) , we have the following expressions for a saturated liquid 

magnetic subsatnce 

x32 = - -5&+-g 
Is 

2 j 

Let us assign the quantities appearing in these formulas, the following orders of magnitude 

which are characteristic for liquids under normal conditions : 

y1 = 10e3 / deg , ys = iOe4 / au-n, K, = 3 x IO-2 gauss / deg 

T = 3 x 102 deg, cp = 1O1O erg/g x deg, a, = 10’ cm/s 

p = 1 g/cm3, p = 108 dyn/cma = 1 atm 

Then, according to estimates, the term pzS1 makes the greatest contribution to (7). 
Consequently, disregarding terms of the order higher than 10-*, we obtain 
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which shows that in the example in question instability can occur in the fields H > 
py2Pa521KoT - IO5 gauss. 

The author expresses his gratitude to L. I. Sedov for the attention shown to this work 

and for valuable comments made during its assessment. 
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PLANE BLECTROHYDRODYNAMIC FLOW WITH REVERSE CURRENT 
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We consider the modes of flow of unipolarly charged jets in the case when the 
charged particles return along the peripheral zones of the hydrodynamic streams 
to the electrode-“emitter” under the action of both the induced and the exter- 
nal electic field. It is shown that the reverse curren increases with increasing 
width of the section through which the charged particles enter, the electric 
charge density at this section and the intensity of the external retarding field. 

The electric current from the electrode emitter is reduced by the reverse cur- 
rent and the retarding effect of the external field. 

During the present investigation we solve the two-dimensional electrohydro- 

dynamic equations numerically, determine the local electrical parameters and 
the character of the flow established over the whole region. 

The reserve currents result from the spatial (two-dimensional) character of 
the real electrohydrodynamic flows. The effect becomes of interest when con- 

structing electrohydrodynamic energy transducers where the losses caused by 


